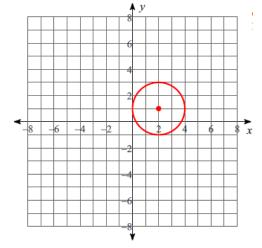
SM2 4.4: Graphing Circles

Identify the center and radius of each. Then sketch the graph.

1)
$$(x-2)^2 + (y+4)^2 = 1$$

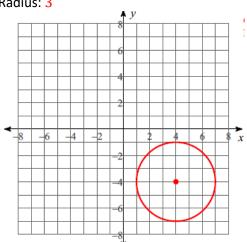
2)
$$(x-2)^2 + (y-1)^2 = 4$$


Center: (2, -4)

Radius:1

Center: (2, 1)

Radius: 2



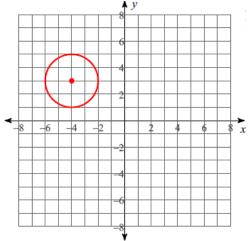
3)
$$(x-4)^2 + (y+4)^2 = 9$$

4) $(x+2)^2 + (y-1)^2 = 25$

Center: (4, -4)

Radius: 3

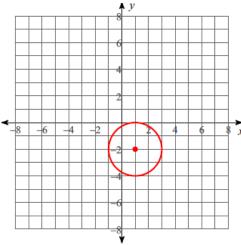
Center: (-2, 1)


Radius: 5

-8 -6 -4 -2 2 4 6 8 x

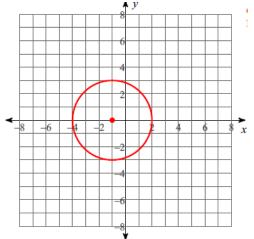
5)
$$(x+4)^2 + (y-3)^2 = 4$$

Center: (-4,3)


Radius: 2

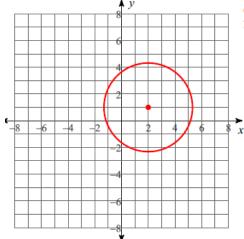
6)
$$(x-1)^2 + (y+2)^2 = 4$$

Center: (1, -2)


Radius: 2

7)
$$(x+1)^2 + y^2 = 9$$

Center: (-1,0)


Radius: 3

8)
$$(x-2)^2 + (y-1)^2 = 11$$

Center: (2, 1)

Radius: $\sqrt{11} \approx 3.31$

Identify the center and radius of each.

9)
$$(x-15)^2 + (y+1)^2 = 49$$

10)
$$x^2 + (y - 14)^2 = 81$$

Center: (15, -1)

Radius: 7

Center: (0, 14)

Radius: 9

Use the information provided to write the equation of each circle.

Center:
$$(6,4)$$
 12) Center: $(-15,-11)$ Radius: 2 Radius: $\sqrt{15}$

$$(x-6)^2 + (y-4)^2 = 4$$
 $(x+15)^2 + (y+11)^2 = 15$

- 13) A particular cell phone tower is designed to service a 12-mile radius. The tower is located at (-3,5)on a coordinate plane whose units represent miles.
 - a) What is the standard equation of the outer boundary of the region serviced by the tower?

$$(x+3)^2 + (y-5)^2 = 144$$

- b) Is a cell phone user at (8,0) within the service range? Explain. $(8+3)^2 + (0-5)^2 = 11^2 + (-5)^2 = 146$ which is bigger than 144 so the user is not within the service range of this tower.
- 14) A pizza restaurant will deliver up to 5 miles. The restaurant is located at the origin on a coordinate plane whose units represent miles.
 - a) What is the standard equation of the outer boundary of the delivery region?

$$x^2 + y^2 = 25$$

b) Customers are located at A(4,3), B(5,0), and $C(2,\sqrt{21})$. Which of these customers, if any, are on the outer boundary of the delivery region? Explain.

A is on the outer boundary since $4^2 + 3^2 = 25$

B is on the outer boundary since $5^2 + 0^2 = 25$

C is on the outer boundary since $2^2 + \sqrt{21}^2 = 25$